3.5.11 \(\int \frac {(a+a \sec (c+d x))^{3/2}}{\cos ^{\frac {5}{2}}(c+d x)} \, dx\) [411]

Optimal. Leaf size=180 \[ \frac {11 a^{3/2} \sinh ^{-1}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}}{8 d}+\frac {a^2 \sin (c+d x)}{3 d \cos ^{\frac {7}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}}+\frac {11 a^2 \sin (c+d x)}{12 d \cos ^{\frac {5}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}}+\frac {11 a^2 \sin (c+d x)}{8 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}} \]

[Out]

11/8*a^(3/2)*arcsinh(a^(1/2)*tan(d*x+c)/(a+a*sec(d*x+c))^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/d+1/3*a^2*si
n(d*x+c)/d/cos(d*x+c)^(7/2)/(a+a*sec(d*x+c))^(1/2)+11/12*a^2*sin(d*x+c)/d/cos(d*x+c)^(5/2)/(a+a*sec(d*x+c))^(1
/2)+11/8*a^2*sin(d*x+c)/d/cos(d*x+c)^(3/2)/(a+a*sec(d*x+c))^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.21, antiderivative size = 180, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 6, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.240, Rules used = {4349, 3899, 21, 3888, 3886, 221} \begin {gather*} \frac {11 a^{3/2} \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \sinh ^{-1}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{8 d}+\frac {11 a^2 \sin (c+d x)}{8 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}+\frac {11 a^2 \sin (c+d x)}{12 d \cos ^{\frac {5}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}+\frac {a^2 \sin (c+d x)}{3 d \cos ^{\frac {7}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a + a*Sec[c + d*x])^(3/2)/Cos[c + d*x]^(5/2),x]

[Out]

(11*a^(3/2)*ArcSinh[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]]*Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]])/(8
*d) + (a^2*Sin[c + d*x])/(3*d*Cos[c + d*x]^(7/2)*Sqrt[a + a*Sec[c + d*x]]) + (11*a^2*Sin[c + d*x])/(12*d*Cos[c
 + d*x]^(5/2)*Sqrt[a + a*Sec[c + d*x]]) + (11*a^2*Sin[c + d*x])/(8*d*Cos[c + d*x]^(3/2)*Sqrt[a + a*Sec[c + d*x
]])

Rule 21

Int[(u_.)*((a_) + (b_.)*(v_))^(m_.)*((c_) + (d_.)*(v_))^(n_.), x_Symbol] :> Dist[(b/d)^m, Int[u*(c + d*v)^(m +
 n), x], x] /; FreeQ[{a, b, c, d, n}, x] && EqQ[b*c - a*d, 0] && IntegerQ[m] && ( !IntegerQ[n] || SimplerQ[c +
 d*x, a + b*x])

Rule 221

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSinh[Rt[b, 2]*(x/Sqrt[a])]/Rt[b, 2], x] /; FreeQ[{a, b},
 x] && GtQ[a, 0] && PosQ[b]

Rule 3886

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[-2*(a/(b
*f))*Sqrt[a*(d/b)], Subst[Int[1/Sqrt[1 + x^2/a], x], x, b*(Cot[e + f*x]/Sqrt[a + b*Csc[e + f*x]])], x] /; Free
Q[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && GtQ[a*(d/b), 0]

Rule 3888

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[-2*b*d*
Cot[e + f*x]*((d*Csc[e + f*x])^(n - 1)/(f*(2*n - 1)*Sqrt[a + b*Csc[e + f*x]])), x] + Dist[2*a*d*((n - 1)/(b*(2
*n - 1))), Int[Sqrt[a + b*Csc[e + f*x]]*(d*Csc[e + f*x])^(n - 1), x], x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a
^2 - b^2, 0] && GtQ[n, 1] && IntegerQ[2*n]

Rule 3899

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(-b^2)
*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m - 2)*((d*Csc[e + f*x])^n/(f*(m + n - 1))), x] + Dist[b/(m + n - 1), Int[
(a + b*Csc[e + f*x])^(m - 2)*(d*Csc[e + f*x])^n*(b*(m + 2*n - 1) + a*(3*m + 2*n - 4)*Csc[e + f*x]), x], x] /;
FreeQ[{a, b, d, e, f, n}, x] && EqQ[a^2 - b^2, 0] && GtQ[m, 1] && NeQ[m + n - 1, 0] && IntegerQ[2*m]

Rule 4349

Int[(u_)*((c_.)*sin[(a_.) + (b_.)*(x_)])^(m_.), x_Symbol] :> Dist[(c*Csc[a + b*x])^m*(c*Sin[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Csc[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSecantIntegrandQ[
u, x]

Rubi steps

\begin {align*} \int \frac {(a+a \sec (c+d x))^{3/2}}{\cos ^{\frac {5}{2}}(c+d x)} \, dx &=\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sec ^{\frac {5}{2}}(c+d x) (a+a \sec (c+d x))^{3/2} \, dx\\ &=\frac {a^2 \sin (c+d x)}{3 d \cos ^{\frac {7}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}}+\frac {1}{3} \left (a \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sec ^{\frac {5}{2}}(c+d x) \left (\frac {11 a}{2}+\frac {11}{2} a \sec (c+d x)\right )}{\sqrt {a+a \sec (c+d x)}} \, dx\\ &=\frac {a^2 \sin (c+d x)}{3 d \cos ^{\frac {7}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}}+\frac {1}{6} \left (11 a \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sec ^{\frac {5}{2}}(c+d x) \sqrt {a+a \sec (c+d x)} \, dx\\ &=\frac {a^2 \sin (c+d x)}{3 d \cos ^{\frac {7}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}}+\frac {11 a^2 \sin (c+d x)}{12 d \cos ^{\frac {5}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}}+\frac {1}{8} \left (11 a \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sec ^{\frac {3}{2}}(c+d x) \sqrt {a+a \sec (c+d x)} \, dx\\ &=\frac {a^2 \sin (c+d x)}{3 d \cos ^{\frac {7}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}}+\frac {11 a^2 \sin (c+d x)}{12 d \cos ^{\frac {5}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}}+\frac {11 a^2 \sin (c+d x)}{8 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}}+\frac {1}{16} \left (11 a \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sqrt {\sec (c+d x)} \sqrt {a+a \sec (c+d x)} \, dx\\ &=\frac {a^2 \sin (c+d x)}{3 d \cos ^{\frac {7}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}}+\frac {11 a^2 \sin (c+d x)}{12 d \cos ^{\frac {5}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}}+\frac {11 a^2 \sin (c+d x)}{8 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}}-\frac {\left (11 a \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \text {Subst}\left (\int \frac {1}{\sqrt {1+\frac {x^2}{a}}} \, dx,x,-\frac {a \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{8 d}\\ &=\frac {11 a^{3/2} \sinh ^{-1}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}}{8 d}+\frac {a^2 \sin (c+d x)}{3 d \cos ^{\frac {7}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}}+\frac {11 a^2 \sin (c+d x)}{12 d \cos ^{\frac {5}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}}+\frac {11 a^2 \sin (c+d x)}{8 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.55, size = 112, normalized size = 0.62 \begin {gather*} \frac {a \sec \left (\frac {1}{2} (c+d x)\right ) \sqrt {a (1+\sec (c+d x))} \left (66 \sqrt {2} \tanh ^{-1}\left (\sqrt {2} \sin \left (\frac {1}{2} (c+d x)\right )\right ) \cos ^3(c+d x)+54 \sin \left (\frac {1}{2} (c+d x)\right )+11 \left (\sin \left (\frac {3}{2} (c+d x)\right )+3 \sin \left (\frac {5}{2} (c+d x)\right )\right )\right )}{96 d \cos ^{\frac {5}{2}}(c+d x)} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(a + a*Sec[c + d*x])^(3/2)/Cos[c + d*x]^(5/2),x]

[Out]

(a*Sec[(c + d*x)/2]*Sqrt[a*(1 + Sec[c + d*x])]*(66*Sqrt[2]*ArcTanh[Sqrt[2]*Sin[(c + d*x)/2]]*Cos[c + d*x]^3 +
54*Sin[(c + d*x)/2] + 11*(Sin[(3*(c + d*x))/2] + 3*Sin[(5*(c + d*x))/2])))/(96*d*Cos[c + d*x]^(5/2))

________________________________________________________________________________________

Maple [A]
time = 0.15, size = 244, normalized size = 1.36

method result size
default \(\frac {\left (33 \left (\cos ^{3}\left (d x +c \right )\right ) \arctan \left (\frac {\sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \left (1+\cos \left (d x +c \right )+\sin \left (d x +c \right )\right ) \sqrt {2}}{4}\right ) \sqrt {2}-33 \left (\cos ^{3}\left (d x +c \right )\right ) \arctan \left (\frac {\sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \left (1+\cos \left (d x +c \right )-\sin \left (d x +c \right )\right ) \sqrt {2}}{4}\right ) \sqrt {2}+66 \sin \left (d x +c \right ) \left (\cos ^{2}\left (d x +c \right )\right ) \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}+44 \cos \left (d x +c \right ) \sin \left (d x +c \right ) \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}+16 \sin \left (d x +c \right ) \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\right ) \sqrt {\frac {a \left (1+\cos \left (d x +c \right )\right )}{\cos \left (d x +c \right )}}\, \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \left (\cos ^{2}\left (d x +c \right )-1\right ) a}{96 d \cos \left (d x +c \right )^{\frac {5}{2}} \sin \left (d x +c \right )^{2}}\) \(244\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+a*sec(d*x+c))^(3/2)/cos(d*x+c)^(5/2),x,method=_RETURNVERBOSE)

[Out]

1/96/d*(33*cos(d*x+c)^3*2^(1/2)*arctan(1/4*(-2/(1+cos(d*x+c)))^(1/2)*(1+cos(d*x+c)+sin(d*x+c))*2^(1/2))-33*cos
(d*x+c)^3*2^(1/2)*arctan(1/4*(-2/(1+cos(d*x+c)))^(1/2)*(1+cos(d*x+c)-sin(d*x+c))*2^(1/2))+66*sin(d*x+c)*cos(d*
x+c)^2*(-2/(1+cos(d*x+c)))^(1/2)+44*cos(d*x+c)*sin(d*x+c)*(-2/(1+cos(d*x+c)))^(1/2)+16*sin(d*x+c)*(-2/(1+cos(d
*x+c)))^(1/2))*(a*(1+cos(d*x+c))/cos(d*x+c))^(1/2)*(-2/(1+cos(d*x+c)))^(1/2)/cos(d*x+c)^(5/2)/sin(d*x+c)^2*(co
s(d*x+c)^2-1)*a

________________________________________________________________________________________

Maxima [B] Leaf count of result is larger than twice the leaf count of optimal. 2361 vs. \(2 (150) = 300\).
time = 0.67, size = 2361, normalized size = 13.12 \begin {gather*} \text {Too large to display} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))^(3/2)/cos(d*x+c)^(5/2),x, algorithm="maxima")

[Out]

-1/96*(132*(sqrt(2)*a*sin(6*d*x + 6*c) + 3*sqrt(2)*a*sin(4*d*x + 4*c) + 3*sqrt(2)*a*sin(2*d*x + 2*c))*cos(11/4
*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 44*(sqrt(2)*a*sin(6*d*x + 6*c) + 3*sqrt(2)*a*sin(4*d*x + 4*c)
+ 3*sqrt(2)*a*sin(2*d*x + 2*c))*cos(9/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 216*(sqrt(2)*a*sin(6*d*
x + 6*c) + 3*sqrt(2)*a*sin(4*d*x + 4*c) + 3*sqrt(2)*a*sin(2*d*x + 2*c))*cos(7/4*arctan2(sin(2*d*x + 2*c), cos(
2*d*x + 2*c))) - 216*(sqrt(2)*a*sin(6*d*x + 6*c) + 3*sqrt(2)*a*sin(4*d*x + 4*c) + 3*sqrt(2)*a*sin(2*d*x + 2*c)
)*cos(5/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) - 44*(sqrt(2)*a*sin(6*d*x + 6*c) + 3*sqrt(2)*a*sin(4*d*
x + 4*c) + 3*sqrt(2)*a*sin(2*d*x + 2*c))*cos(3/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) - 132*(sqrt(2)*a
*sin(6*d*x + 6*c) + 3*sqrt(2)*a*sin(4*d*x + 4*c) + 3*sqrt(2)*a*sin(2*d*x + 2*c))*cos(1/4*arctan2(sin(2*d*x + 2
*c), cos(2*d*x + 2*c))) - 33*(a*cos(6*d*x + 6*c)^2 + 9*a*cos(4*d*x + 4*c)^2 + 9*a*cos(2*d*x + 2*c)^2 + a*sin(6
*d*x + 6*c)^2 + 9*a*sin(4*d*x + 4*c)^2 + 18*a*sin(4*d*x + 4*c)*sin(2*d*x + 2*c) + 9*a*sin(2*d*x + 2*c)^2 + 2*(
3*a*cos(4*d*x + 4*c) + 3*a*cos(2*d*x + 2*c) + a)*cos(6*d*x + 6*c) + 6*(3*a*cos(2*d*x + 2*c) + a)*cos(4*d*x + 4
*c) + 6*a*cos(2*d*x + 2*c) + 6*(a*sin(4*d*x + 4*c) + a*sin(2*d*x + 2*c))*sin(6*d*x + 6*c) + a)*log(2*cos(1/4*a
rctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))^2 + 2*sin(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))^2 + 2*s
qrt(2)*cos(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 2*sqrt(2)*sin(1/4*arctan2(sin(2*d*x + 2*c), cos(
2*d*x + 2*c))) + 2) + 33*(a*cos(6*d*x + 6*c)^2 + 9*a*cos(4*d*x + 4*c)^2 + 9*a*cos(2*d*x + 2*c)^2 + a*sin(6*d*x
 + 6*c)^2 + 9*a*sin(4*d*x + 4*c)^2 + 18*a*sin(4*d*x + 4*c)*sin(2*d*x + 2*c) + 9*a*sin(2*d*x + 2*c)^2 + 2*(3*a*
cos(4*d*x + 4*c) + 3*a*cos(2*d*x + 2*c) + a)*cos(6*d*x + 6*c) + 6*(3*a*cos(2*d*x + 2*c) + a)*cos(4*d*x + 4*c)
+ 6*a*cos(2*d*x + 2*c) + 6*(a*sin(4*d*x + 4*c) + a*sin(2*d*x + 2*c))*sin(6*d*x + 6*c) + a)*log(2*cos(1/4*arcta
n2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))^2 + 2*sin(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))^2 + 2*sqrt(
2)*cos(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) - 2*sqrt(2)*sin(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*
x + 2*c))) + 2) - 33*(a*cos(6*d*x + 6*c)^2 + 9*a*cos(4*d*x + 4*c)^2 + 9*a*cos(2*d*x + 2*c)^2 + a*sin(6*d*x + 6
*c)^2 + 9*a*sin(4*d*x + 4*c)^2 + 18*a*sin(4*d*x + 4*c)*sin(2*d*x + 2*c) + 9*a*sin(2*d*x + 2*c)^2 + 2*(3*a*cos(
4*d*x + 4*c) + 3*a*cos(2*d*x + 2*c) + a)*cos(6*d*x + 6*c) + 6*(3*a*cos(2*d*x + 2*c) + a)*cos(4*d*x + 4*c) + 6*
a*cos(2*d*x + 2*c) + 6*(a*sin(4*d*x + 4*c) + a*sin(2*d*x + 2*c))*sin(6*d*x + 6*c) + a)*log(2*cos(1/4*arctan2(s
in(2*d*x + 2*c), cos(2*d*x + 2*c)))^2 + 2*sin(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))^2 - 2*sqrt(2)*c
os(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 2*sqrt(2)*sin(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x +
2*c))) + 2) + 33*(a*cos(6*d*x + 6*c)^2 + 9*a*cos(4*d*x + 4*c)^2 + 9*a*cos(2*d*x + 2*c)^2 + a*sin(6*d*x + 6*c)^
2 + 9*a*sin(4*d*x + 4*c)^2 + 18*a*sin(4*d*x + 4*c)*sin(2*d*x + 2*c) + 9*a*sin(2*d*x + 2*c)^2 + 2*(3*a*cos(4*d*
x + 4*c) + 3*a*cos(2*d*x + 2*c) + a)*cos(6*d*x + 6*c) + 6*(3*a*cos(2*d*x + 2*c) + a)*cos(4*d*x + 4*c) + 6*a*co
s(2*d*x + 2*c) + 6*(a*sin(4*d*x + 4*c) + a*sin(2*d*x + 2*c))*sin(6*d*x + 6*c) + a)*log(2*cos(1/4*arctan2(sin(2
*d*x + 2*c), cos(2*d*x + 2*c)))^2 + 2*sin(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))^2 - 2*sqrt(2)*cos(1
/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) - 2*sqrt(2)*sin(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)
)) + 2) - 132*(sqrt(2)*a*cos(6*d*x + 6*c) + 3*sqrt(2)*a*cos(4*d*x + 4*c) + 3*sqrt(2)*a*cos(2*d*x + 2*c) + sqrt
(2)*a)*sin(11/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) - 44*(sqrt(2)*a*cos(6*d*x + 6*c) + 3*sqrt(2)*a*co
s(4*d*x + 4*c) + 3*sqrt(2)*a*cos(2*d*x + 2*c) + sqrt(2)*a)*sin(9/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))
) - 216*(sqrt(2)*a*cos(6*d*x + 6*c) + 3*sqrt(2)*a*cos(4*d*x + 4*c) + 3*sqrt(2)*a*cos(2*d*x + 2*c) + sqrt(2)*a)
*sin(7/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 216*(sqrt(2)*a*cos(6*d*x + 6*c) + 3*sqrt(2)*a*cos(4*d*
x + 4*c) + 3*sqrt(2)*a*cos(2*d*x + 2*c) + sqrt(2)*a)*sin(5/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 44
*(sqrt(2)*a*cos(6*d*x + 6*c) + 3*sqrt(2)*a*cos(4*d*x + 4*c) + 3*sqrt(2)*a*cos(2*d*x + 2*c) + sqrt(2)*a)*sin(3/
4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 132*(sqrt(2)*a*cos(6*d*x + 6*c) + 3*sqrt(2)*a*cos(4*d*x + 4*c
) + 3*sqrt(2)*a*cos(2*d*x + 2*c) + sqrt(2)*a)*sin(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))))*sqrt(a)/((
2*(3*cos(4*d*x + 4*c) + 3*cos(2*d*x + 2*c) + 1)*cos(6*d*x + 6*c) + cos(6*d*x + 6*c)^2 + 6*(3*cos(2*d*x + 2*c)
+ 1)*cos(4*d*x + 4*c) + 9*cos(4*d*x + 4*c)^2 + 9*cos(2*d*x + 2*c)^2 + 6*(sin(4*d*x + 4*c) + sin(2*d*x + 2*c))*
sin(6*d*x + 6*c) + sin(6*d*x + 6*c)^2 + 9*sin(4*d*x + 4*c)^2 + 18*sin(4*d*x + 4*c)*sin(2*d*x + 2*c) + 9*sin(2*
d*x + 2*c)^2 + 6*cos(2*d*x + 2*c) + 1)*d)

________________________________________________________________________________________

Fricas [A]
time = 4.26, size = 391, normalized size = 2.17 \begin {gather*} \left [\frac {4 \, {\left (33 \, a \cos \left (d x + c\right )^{2} + 22 \, a \cos \left (d x + c\right ) + 8 \, a\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) + 33 \, {\left (a \cos \left (d x + c\right )^{4} + a \cos \left (d x + c\right )^{3}\right )} \sqrt {a} \log \left (\frac {a \cos \left (d x + c\right )^{3} - 4 \, \sqrt {a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} {\left (\cos \left (d x + c\right ) - 2\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - 7 \, a \cos \left (d x + c\right )^{2} + 8 \, a}{\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2}}\right )}{96 \, {\left (d \cos \left (d x + c\right )^{4} + d \cos \left (d x + c\right )^{3}\right )}}, \frac {2 \, {\left (33 \, a \cos \left (d x + c\right )^{2} + 22 \, a \cos \left (d x + c\right ) + 8 \, a\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) + 33 \, {\left (a \cos \left (d x + c\right )^{4} + a \cos \left (d x + c\right )^{3}\right )} \sqrt {-a} \arctan \left (\frac {2 \, \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{a \cos \left (d x + c\right )^{2} - a \cos \left (d x + c\right ) - 2 \, a}\right )}{48 \, {\left (d \cos \left (d x + c\right )^{4} + d \cos \left (d x + c\right )^{3}\right )}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))^(3/2)/cos(d*x+c)^(5/2),x, algorithm="fricas")

[Out]

[1/96*(4*(33*a*cos(d*x + c)^2 + 22*a*cos(d*x + c) + 8*a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x
+ c))*sin(d*x + c) + 33*(a*cos(d*x + c)^4 + a*cos(d*x + c)^3)*sqrt(a)*log((a*cos(d*x + c)^3 - 4*sqrt(a)*sqrt((
a*cos(d*x + c) + a)/cos(d*x + c))*(cos(d*x + c) - 2)*sqrt(cos(d*x + c))*sin(d*x + c) - 7*a*cos(d*x + c)^2 + 8*
a)/(cos(d*x + c)^3 + cos(d*x + c)^2)))/(d*cos(d*x + c)^4 + d*cos(d*x + c)^3), 1/48*(2*(33*a*cos(d*x + c)^2 + 2
2*a*cos(d*x + c) + 8*a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c) + 33*(a*cos(d*
x + c)^4 + a*cos(d*x + c)^3)*sqrt(-a)*arctan(2*sqrt(-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x +
 c))*sin(d*x + c)/(a*cos(d*x + c)^2 - a*cos(d*x + c) - 2*a)))/(d*cos(d*x + c)^4 + d*cos(d*x + c)^3)]

________________________________________________________________________________________

Sympy [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: SystemError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))**(3/2)/cos(d*x+c)**(5/2),x)

[Out]

Exception raised: SystemError >> excessive stack use: stack is 6437 deep

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))^(3/2)/cos(d*x+c)^(5/2),x, algorithm="giac")

[Out]

integrate((a*sec(d*x + c) + a)^(3/2)/cos(d*x + c)^(5/2), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^{3/2}}{{\cos \left (c+d\,x\right )}^{5/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + a/cos(c + d*x))^(3/2)/cos(c + d*x)^(5/2),x)

[Out]

int((a + a/cos(c + d*x))^(3/2)/cos(c + d*x)^(5/2), x)

________________________________________________________________________________________